3.1394 \(\int \frac{(A+C \cos ^2(c+d x)) \sqrt{\sec (c+d x)}}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=145 \[ \frac{2 \left (a^2 C+A b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}-\frac{2 a C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d} \]

[Out]

(2*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*d) - (2*a*C*Sqrt[Cos[c + d*x]]*Ellipt
icF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^2*d) + (2*(A*b^2 + a^2*C)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a +
b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^2*(a + b)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.36917, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.171, Rules used = {4221, 3060, 2639, 3002, 2641, 2805} \[ \frac{2 \left (a^2 C+A b^2\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d (a+b)}-\frac{2 a C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b^2 d}+\frac{2 C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x]),x]

[Out]

(2*C*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b*d) - (2*a*C*Sqrt[Cos[c + d*x]]*Ellipt
icF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^2*d) + (2*(A*b^2 + a^2*C)*Sqrt[Cos[c + d*x]]*EllipticPi[(2*b)/(a +
b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(b^2*(a + b)*d)

Rule 4221

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 3060

Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]], x], x] - Dist[1/(b*d), Int[Sim
p[a*c*C - A*b*d + (b*c*C + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /;
FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\left (A+C \cos ^2(c+d x)\right ) \sqrt{\sec (c+d x)}}{a+b \cos (c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{A+C \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx\\ &=-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-A b+a C \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b}+\frac{\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{b}\\ &=\frac{2 C \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{b d}-\frac{\left (a C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{b^2}+\frac{\left (\left (A b^2+a^2 C\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{b^2}\\ &=\frac{2 C \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{b d}-\frac{2 a C \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{b^2 d}+\frac{2 \left (A b^2+a^2 C\right ) \sqrt{\cos (c+d x)} \Pi \left (\frac{2 b}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{\sec (c+d x)}}{b^2 (a+b) d}\\ \end{align*}

Mathematica [A]  time = 6.45722, size = 242, normalized size = 1.67 \[ \frac{\cot (c+d x) \left (2 a^2 C \sqrt{-\tan ^2(c+d x)} \Pi \left (-\frac{a}{b};\left .-\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )+2 A b^2 \sqrt{-\tan ^2(c+d x)} \Pi \left (-\frac{a}{b};\left .-\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )+2 b (a C+A b) \sqrt{-\tan ^2(c+d x)} F\left (\left .\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )+a b C \sec ^{\frac{7}{2}}(c+d x)-a b C \sec ^{\frac{3}{2}}(c+d x)+a b C \cos (2 (c+d x)) \sec ^{\frac{7}{2}}(c+d x)-a b C \cos (2 (c+d x)) \sec ^{\frac{3}{2}}(c+d x)-2 a b C \sqrt{-\tan ^2(c+d x)} E\left (\left .\sin ^{-1}\left (\sqrt{\sec (c+d x)}\right )\right |-1\right )\right )}{a b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + b*Cos[c + d*x]),x]

[Out]

(Cot[c + d*x]*(-(a*b*C*Sec[c + d*x]^(3/2)) - a*b*C*Cos[2*(c + d*x)]*Sec[c + d*x]^(3/2) + a*b*C*Sec[c + d*x]^(7
/2) + a*b*C*Cos[2*(c + d*x)]*Sec[c + d*x]^(7/2) - 2*a*b*C*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[
c + d*x]^2] + 2*b*(A*b + a*C)*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2*A*b^2*Ellipt
icPi[-(a/b), -ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] + 2*a^2*C*EllipticPi[-(a/b), -ArcSin[Sqrt[
Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2]))/(a*b^2*d)

________________________________________________________________________________________

Maple [A]  time = 1.416, size = 259, normalized size = 1.8 \begin{align*} -2\,{\frac{\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{-2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+1}}{ \left ( a-b \right ){b}^{2}\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d} \left ( A{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ){b}^{2}-C{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}+C{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab-C{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) ab+C{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}+C{\it EllipticPi} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,-2\,{\frac{b}{a-b}},\sqrt{2} \right ){a}^{2} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x)

[Out]

-2*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)
^2+1)^(1/2)*(A*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*b^2-C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a
^2+C*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b-C*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b+C*EllipticE(cos(1/2
*d*x+1/2*c),2^(1/2))*b^2+C*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2))*a^2)/b^2/(a-b)/(-2*sin(1/2*d*x+1/
2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{\sec \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sqrt{\sec{\left (c + d x \right )}}}{a + b \cos{\left (c + d x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+b*cos(d*x+c)),x)

[Out]

Integral((A + C*cos(c + d*x)**2)*sqrt(sec(c + d*x))/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt{\sec \left (d x + c\right )}}{b \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(b*cos(d*x + c) + a), x)